Conventions and the Order of Nature: some historical perspectives
DOI:
https://doi.org/10.18542/amazrecm.v11i22.2435Keywords:
conventionalism, history of science, epistemologyAbstract
The text presents some important historical examples to illustrate and discuss the nature of the conventions that have been adopted in the scientific realm. Clarifies the arguments used by philosophers of the call conventionalist approach to argue that scientific theories can never be absolutely true or false representations about nature. Historical details and implications for science education are discussed in the text.References
Alder, Ken (2004). The Measure of All Things. London: Abacus.
Alonso, Marcelo and Edward J. Finn (1968). Fundamental University Physics, Vol. 1. Reading, Mass.: Addison-Wesley.
Ben-Menahem, Yemima (2006). Conventionalism. Cambridge: Cambridge University Press. De Bièvre, P. and H. S. Peiser (1992). Atomic weight – the name, its history, definition, and units. Pure & Applied Chemistry 64, 1535-1543.
Duff, Michael J. (2004). Comment on time-variation of fundamental constants. arXiv:hep-th/0208093.
Ellis, George and Jean-Philippe Uzan (2005). ’c’ is the speed of light, isn’t it? American Journal of Physics 73, 240-247.
Flick, L. B. and N. G. Lederman, eds. (2006). Scientific Inquiry and Nature of Science: Implications for Teaching, Learning, and Teacher Education. Dordrecht: Springer.
Hacyan, Shahen (2009). What does it mean to modify or test Newton’s second law? American Journal of Physics 77, 607-609.
Hanson, Norwood R. (1965). Patterns of Discovery: An Inquiry into the Conceptual Foundations of Science. Cambridge: Cambridge University Press.
Holden, Norman E. (2004). Atomic weights and the International Committee – a historical review. Chemistry International 26 (online edition).
IAU: http://en.wikipedia.org/wiki/IAU_definition_of_planet.
Jammer, Max (1962). Concepts of Force: A Study in the Foundations of Dynamics. New York: Harper Torchbooks.
Kauffmann, George B. (1988). The Brønsted-Lowry acid-base concept. Journal of Chemical Education 65, 28-31.
Kragh, Helge (2000). Conceptual changes in chemistry: The notion of a chemical element, ca. 1900- 1925. Studies in History and Philosophy of Modern Physics 31, 435-450.
Kragh, Helge (2006). Cosmologies with varying speed of light: A historical perspective. Studies in History and Philosophy of Modern Physics 37, 726-737.
Kragh, Helge (2011). Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology. Oxford: Oxford University Press.
Laidler, Keith J. (1993). The World of Physical Chemistry. Oxford: Oxford University Press.
Layer, Howard P. (2008). Length – Evolution from Measurement Standard to a Fundamental Constant. Gaithersburg, MD: National Institute of Standards and Technology.
Lévy-Leblond, Jean-Marc (1990). Did the big bang begin? American Journal of Physics 58, 156-159.
McComas, William F., ed. (1998). The Nature of Science in Science Education: Rationales and Strategies. Boston: Kluwer Academic.
Misner, Charles W. (1969). Absolute zero of time. Physical Review 186, 1328-1333.
Newton, Roger G. (1997). The Truth of Science: Physical Theories and Reality. Cambridge, Mass.: Harvard University Press.
NIST: http://physics.nist.gov/cuu/Constants/index.html
Paneth, Fritz A. (1962). The epistemological status of the chemical concept of element. British Journal for the Philosophy of Science 13, 1-14, 145-160.
Poincaré, Henri (1952). Science and Hypothesis. New York: Dover Publications.
Popper, Karl R. (1940). Interpretations of nebular red-shifts. Nature 145, 69-70.
Popper, Karl R. (1959). The Logic of Scientific Discovery. New York: Basic Books.
Rosen,Edward, ed. (1959). Three Copernican Treatises. New York: Dover Publications.
Smith, George E. (2006). The vis viva dispute: A controversy at the dawn of dynamics.
Physics Today 59 (October), 31-36.
Szabadvary, F. (1964). Development of the pH concept: A historical survey. Journal of Chemical Education 41, 105-107.
Uzan, Jean-Philippe and Bénédicte Lehoucq (2005). Les Constantes Fondamentales. Paris: Belin.
Van Brakel, Jap (2000). Philosophy of Chemistry: Between the Manifest and the Scientific Image. Leuven: Leuven University Press.
Weintraub, David A. (2007). Is Pluto a Planet? A Historical Journey Through the Solar System. Princeton: Princeton University Press.
Wolfenden, J. H. (1972). The anomaly of strong electrolytes. Ambix 19, 175-196.