The argumentation and metacognitive potential of an experimental activity based on poa (prediction-observation-argumentation)

Authors

DOI:

https://doi.org/10.18542/amazrecm.v14i29.5569

Keywords:

metacognitive incidents, Prediction-Observation-Argumentation, experimental activity, photosynthesis, respiration.

Abstract

This research presents the metacognitive incidents of high school students when experiencing an experimental activity on photosynthesis and respiration based on Prediction-Observation-Argumentation. The activity includes resumption of content, argument elements, and script guides. The experiment was selected aiming to apply knowledge of biology in a real context and to develop argumentative abilities. It consisted of placing a plant in two tubes containing water with phenolphthalein, one remaining in a darkroom and another one in the clearing. Students were asked to predict what would happen to each tube and compare with changes in the color related to pH. Eight students participated and the activity was carried out in cooperative groups, promoting discussion based on the perspective of participation in scientific practices. Specifically, metacognitive incidents were analyzed in the students' discourse when they justified their conclusions based on the data obtained in the experiment. The results indicated four categories of metacognitive incidents: confirmation, monitoring, positive change and negative change. In the discourses the students showed greater ability to observe experimental data and justify their conclusions after confronting their initial predictions with scientific knowledge. However, they present difficulties in arguing their explanations (metacognitive incident of negative change). We indicate that the activities promoting argumentation favor the self-regulation capacity of the learning process.

Author Biographies

Marcia Gorette Lima da Silva, Universidade Federal do Rio Grande do Norte - UFRN

Graduada em Quimica Industrial pela UFPA (1991) e em Licenciatura em Química (1999) pela UFRN, mestre em Engenharia Química (1995) pela UFRN, especialista em CTS pela Universidade de Oviedo (2001), doutora em Educação (2003) pela UFRN e pós-doutorado (2014) em Ensino de Ciências pela Universidad Autonoma de Barcelona (Espanha) como bolsista Capes. Atuou na escola da educação básica por 10 anos. É vinculada ao Instituto de Química da UFRN como professor Associado II. Entre as funções atuais inclui a coordenação do doutorado em Ensino de Ciências e Matemática da UFRN e a participação como membro do projeto de pesquisa Observatório da Educação (OBEDUC-2013). Coordenou o Programa de Bolsas de Iniciação a Docência (PIBID) no curso de Licenciatura em Química no período de 2008-2013, exerceu cargo de vice-coordenadora do Programa de Pós-Graduação em Ensino de Ciências Naturais e Matemática (mestrado profissional) da UFRN e atuou como coordenadora pedagógica do Programa de Bolsas REUNI na Pro-Reitoria de Pós-Graduação, coordenou e atuou como membro do Programa de Licenciaturas Internacionais (PLI) com a Universidade de Coimbra e na Universidade do Minho, no período de 2010 a 2014. Tem experiência na área de Educação em Química atuando, principalmente, com argumentação no ensino de ciências e formação de professores.

Solange Wagner Locatelli, Federal University of ABC

Doutora e Mestre em Ensino de Ciências (Química) pela USP. Bacharel e licenciada em Química pela USP. Experiência na docência para a educação básica/ superior e na formação de professores. Desde 2016 é professora adjunta na Universidade Federal do ABC, onde também coordena o subprojeto de Química no PIBID e é credenciada no Programa de Pós-Graduação em Ensino e História das Ciências e da Matemática. Formação e coordenação do PECME - Grupo de Pesquisa em Ensino de Ciências e Metacognição desde 2017. Linha de pesquisa: Pesquiso na área de ensino de ciências/química. Tenho como principais interesses - 1) pesquisar aspectos da metacognição no ensino-aprendizagem e na formação de professores, estratégias metacognitivas - como por exemplo, a utilização de desenhos, imagens, jogos, mapas conceituais, aulas investigativas na educação básica, utilização de portfólios; 2)(auto)avaliação no ensino de ciências/química e 3) educação de surdos

References

ALEXANDER, P. A.; JUDY, J. E.The interaction of the domain specific and strategic knowledge in academic performance.Review of Educational Research, v. 58, p. 375-404, 1988.

BAKER, L. An Evaluation of the role of metacognitive deficits in learning disabilities.Topics in Learning and Learning Disabilities, v.2, n. 1, p. 27-34, 1982.

BAKER, L. Metacognition in comprehension instruction. In: BLOCK, C. C.; PRESLEY, M. (eds.). Comprehension instruction: research based best practices. New York: Guilford, p.77-95, 2002.

BOGDAN, R.; BIKLEN, S. Investigação qualitativa em educação. Uma introdução à teoria e aos métodos. Porto: Porto Editora, 1994.

CANDELA, A. Ciencia en el aula. Los alumnos entre la argumentación y el consenso. México, D. F.: Paidós, 2001.

CHIARO, S. Argumentação em sala de aula: um caminho para o desenvolvimento da autorregulação do pensamento. 2006. 94 f. Tese (Doutorado em Psicologia) – Universidade Federal de Pernambuco. CFCH. Psicologia Cognitiva, 2006.

CHIARO, S.; AQUINO, K. A. S. Argumentação na sala de aula e seu potencial metacognitivo como caminho para um enfoque CTS no ensino de química: uma proposta analítica.

Educação&Pesquisa, São Paulo, v. 43, n. 2, p. 411-426, 2017.

COOK, E.; KENNEDY, E.; McGUIRE, S. Y. Effect of teaching metacognitive learning strategies on performance in general chemistry courses. Journal Chemical Education Research, v. 90, p. 961-967, 2013.

COSTA, A. L. Mediating the metacognitive (Mimeo) nov. 1984. Educationalleadership. Disponível em: http://www.ascd.org/ASCD/pdf/journals/ed_lead/el_198411_costa.pdf. Acesso em 16/12/2017.

DUSCHL, R. A.; OSBORNE, J. Supporting and promoting argumentation discourse.Studies in Science Education, v. 3, p. 39–72, 2002.

ERDURAN, S. Promoting ideas, evidence and argument in initial science teacher training.School Science Review, v.87, n. 321, p. 45-50, 2006.

ERDURAN, S.; JIMÉNEZ-ALEIXANDRE, M. P. Argumentation in science education: perspectives from classroom-based research, Dordrecht: Springer, 2008.

FLAVELL, J. H. Metacognitive aspects of problem solving. In: RESNICK, L.B. (Orgs.). The nature of intelligence. Hillsdale, N.Y.: Erlbaum, p. 231-235, 1976.

FLAVELL, J. H. Speculations about the nature and development of metacognition. In: F. WEINERT; R. KLUWE (eds.). Metacognition, motivation and understanding. Hillsdale, NJ: Erlbaum, p. 21-29, 1987.

GARCIA-MILA, M.; ANDERSEN, C. Cognitive Foundations of Learning Argumentation. In: ERDURAN, S.; JIMENEZ-ALEIXANDRE. P. M. (eds.). Argumentation in Science Education: Perspectives from classroom-based research. Dordrecht: Springer, p.29-45, 2008.

GEORGHIADES, P. From the general to the situated: Three decades of metacognition. International Journalof Science Education, v. 26, p. 365-383, 2004.

GOMES, A. S.; ALMEIDA, A. C. P. Letramento científico e consciência metacognitiva de grupos de professores em formação inicial e continuada: um estudo exploratório. Amazônia: Revista de Educação em Ciências e Matemática, v. 12, n. 24, p. 53-76, 2016.

GONZÁLEZ, F. E. Acerca de la metacognición. Paradigma, v. 17, n. 1, 1996. Disponível em: http://cidipmar.fundacite.arg.gov.ve/doc/paradigma96/doc5.htm. Acesso em: 16/12/2017.

GONZÁLEZ, S.; ESCUDERO, C. En busca de laautonomía a través de las actividades de cognición y de metacognición en Ciencias. Revista Electrónica de Enseñanza de las Ciencias, v. 6, n. 2, p. 310-330, 2007.

GROTZER, T.; MITTLEFEHLDT, S.The role of metacognition in students understanding and transfer of explanatory structures in science. In: ZOHAR, A.; DORI, Y. J. (eds.). Metacognition in Science Education. Trends in current research, contemporary trends and issues in science education, New York: Springer, p.79-99, 2012.

JAHANGARD, Z.; SOLTANI, A.; ALINEJAD, M. Exploring the relationship between metacognition and attitudes towards science of senior secondary students through a structural equation modeling analysis.Journal of Baltic Science Education, v.15, n. 3, p.340-34, 2016.

JIMÉNEZ-ALEIXANDRE, M. P. Designing argumentation learning environments. In: ERDURAN, S.; JIMÉNEZ-ALEIXANDRE, M. P. (eds.). Argumentation in Science Education: perspectives from classroom-based research, Dordrecht: Springer, p.91-115, 2008.

JIMÉNEZ-ALEIXANDRE, M.P.; BUGALLO-RODRÍGUEZ, A.; DUSCHL, R. A. “Doing the lesson” or “doing science”: argument in high school genetics”. Science Education, v. 84, n. 20, p. 757-792, 2000.

KAWASAKI, C. S.; BIZZO, N. M. V. Fotossíntese um Tema para o Ensino de Ciências? Conceitos Científicos em Destaque. Revista Química Nova na Escola, n. 12, p.24-29, 2000.

KELLY, G. J.; DRUKER, S.; CHEN, C. Students’ reasoning about electricity: combining performance assessment with argumentation analysis. International Journal of Science Education, v. 20, n. 7, p.849–871, 1998.

KIPNIS, M.; HOFSTEIN, A.The inquiry laboratory as a source for development of metacognitive skills.International Journal of Science and Mathematics Education, v. 6, p. 601–627, 2007.

KUHN, D. Science as argument: implications for teaching and learning science thinking. Science Education, v. 77, n. 3, p. 319-337, 1993.

LABRACE, E. C.; CALDEIRA, A. M. A.; BORTOLOZZI, J. A Atividade Prática no Ensino de Biologia: uma possibilidade de unir motivação, cognição e interação. In: CALDEIRA, A. M. A. (org.). Ensino de Ciências e Matemática II: Temas sobre a Formação de Conceitos. São Paulo: Editora, UNESP, p. 91-106, 2009.

LARKIN, S. Socially Mediated Metacognition and Learning to Write. Thinking skills and creativity, v. 4, p.149-159, 2009.

LINN, M. C.; SONGER, N. B. How do students make sense of science? Merrill-Palmer Quarterly, v.39, n.1, p. 47–73, 1993.

LOCATELLI, S.W. Relação existente entre metavisualização e as representações simbólica e submicro na elaboração de atividade em química. 2016. 311f. Tese (Doutorado em Ciências) – Universidade de São Paulo, São Paulo, 2016.

LOCATELLI, S.; ARROIO, A. Designing molecules and thinking about them: metavisual skill in the teaching of Geometrical Isomerism. Revista Brasileira do Ensino de Química. v.6, n.1 e n.2, p.99-112, 2011.

LOCATELLI, S.; ARROIO. The monitoring of an introductory class on geometrical isomerism by metavisual incidents. Journal of Science Education, v. 15, n. 2, p. 62-65, 2014a.

LOCATELLI, S.; ARROIO. Metavisual strategy assisting the learning of initial concepts of electrochemistry. Natural Science Education, v.1, n.39, p.14-24, 2014b.

LÜDKE, M.; ANDRÉ, A. D. E. M. Pesquisa em educação: abordagens qualitativas. São Paulo: Editora Pedagógica e Universitária, 1986.

MEDEIROS, E. F. Desenvolvendo Habilidades Argumentativas em Aulas de Biologia: Uma Atividade Experimental Baseada na Perspectiva POA (Predizer, Observar e Argumentar). 2018. 122f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática) - Universidade Federal do Rio Grande do Norte -UFRN, Natal, 2018. No prelo.

NICKERSON, R. Kinds of thinking taught in currents programs. Educational Leadership. v. 42, n.1, p. 26-36, 1984.

OSBORNE, J. The role of Argument: Learning how to learn in School Science. In: FRASER, B. J; TOBIN, K.; MCROBBIE, C. (eds.). Second International Handbook of Science Education. New York: Springer, p. 933-949, 2012.

OSBORNE, J. F.; PATTERSON, A. Scientific argument and explanation: A necessary distinction? Science Education, v. 95, n. 4, p. 627-638, 2011.

OSBORNE, J. et al. Enhancing the quality of argument in school science. School science review, v. 82, n. 301, p. 63-70, 2001.

PINTRICH, P. R. The role of metacognitive knowledge in learning, teaching and assessing.Theory into Practice, v. 4, n. 4, p. 219–225, 2002.

QUEIROZ, G.; AZEVEDO, C. A. A ciência alternativa do senso comum e o treinamento de professores. Caderno Catarinense de Ensino de Física, Florianópolis, v. 4 n.1, p.7-16, 1987.

RICKEY, D.; STACY, A. M.The role of metacognition in learning chemistry.Journal of Chemical Education, v. 77, n.7, p. 915-920, 2000.

SÁNCHEZ-CASTAÑO, J. A.; CASTAÑO-MEJÍA, O. Y.; TAMAYO-ALZATE, O. E. La argumentación metacognitiva en el aula de ciencias. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud, v.13, n.2, p. 1153-1168, 2015.

SASSERON, L. H. et al. Situações Argumentativas em Sala de Aula: a dualidade argumento-explicação. In: IX CONGRES INTERNACIONAL SOBRE INVESTIGACIÓN EN DIDÁCTICA DE LAS CIENCIAS. Girona, p. 3233-3236, 2013.

SCHWARZ, B. B. Argumentation in Learning. In: MULLER, M. N.; PERRET-CLERMONT, A. N (eds.). Argumentation and Education.Theoretical foundations and practice.Breinigsville: Springer, p. 91-126, 2009.

SMITH K. J.; METZ P. A. Evaluating student understanding of solution chemistry through microscopic representations, Journal of Chemical Education, v. 73, p. 233–235, 1996.

THOMAS, G.; ANDERSON, D.; NASHON, S. Development of an Instrument Designed to Investigate Elements of Science Students’ Metacognition, Self-Efficacy and Learning Processes: The SEMLI-S. International Journal of Science Education, v. 30, n. 13, p. 1701–1724, 2008.

TOBIAS, S; EVERSON, H. T. Knowing what you know and what you don't: further research on metacognitive knowledge monitoring. College Board Research Report, New York: College Entrance Examination Board, 2002.

TOULMIN, S. E. Os Usos do Argumento. Trad. Reinaldo Guarany e Marcelo Brandão Cipolla. 2 Ed. São Paulo: Martins Fontes, 2006.

WHITE, R. T. Metacognition. In: KEEVE, J. P. (ed.). Educational Research, Methodology and measurement: an international Handbook. Oxford: Pergamon, p. 70-75, 1988.

ZAGO et al. Fotossíntese: Concepções dos Alunos do Ensino Médio de Itumbiara-GO e Buriti-Alegre-GO. RevistaBrasileira de Biociências, Porto Alegre, v. 5, p. 780-782, 2007.

ZOHAR A.; BARZILAI, S. A review of research on metacognition in science education: current and future directions. Studies in Science Education, v.49, n. 2, p.121-169, 2013.

ZOHAR, A.; DORI, Y. J. Introduction. In: ZOHAR, A.; DORI, Y. J. (eds.). Metacognition in Science Education.Breinigsville: Springer, p. 1-19, 2012.

ZOHAR, A.; NEMET, F. Fostering students’ knowledge and argumentation skills through dilemmas in human genetics.Journal of Research in Science Teaching, v. 39, n.1, p.35–62. 2002.

Published

2018-07-05