A argumentação e o potencial metacognitivo de uma atividade experimental baseada na POA (previsão-observação-argumentação)
DOI :
https://doi.org/10.18542/amazrecm.v14i29.5569Mots-clés :
incidentes metacognitivos, Previsão-Observação-Argumentação, atividade experimental, fotossíntese, respiraçãoRésumé
Esta pesquisa apresenta incidentes metacognitivos de alunos do ensino médio ao vivenciar uma atividade experimental sobre fotossíntese e respiração baseada na Previsão-Observação-Argumentação. A atividade inclui retomada dos conteúdos, elementos do argumento e guias de scripts. O experimento selecionado objetivou aplicar conhecimentos de biologia em um contexto real e desenvolver habilidades argumentativas. Consistia em colocar uma planta em dois tubos contendo água com fenolftaleína, onde um ficaria em uma câmara escura e outro no claro. Foi solicitado aos alunos prever o que aconteceria com cada tubo e comparar com as mudanças na cor do pH. Participaram 8 alunos sendo a atividade realizada em grupos cooperativos promovendo discussão a partir da perspetiva de participação em práticas científicas. Concretamente foram analisados incidentes metacognitivos presentes no discurso dos alunos quando justificavam suas conclusões baseadas nos dados obtidos no experimento. Os resultados indicaram 4 categorias de incidentes metacognitivos: confirmação, monitoramento, mudança positiva e mudança negativa. Nos discursos mostraram maior habilidade para observar dados experimentais e justificar depois de confrontar suas previsões iniciais com conhecimento científico. No entanto, apresentaram dificuldades em argumentar suas explicações (incidente metacognitivo de mudança negativa). Sinalizamos que as atividades envolvendo a argumentação favoreceram a capacidade de autorregulação do processo de aprendizagemRéférences
ALEXANDER, P. A.; JUDY, J. E.The interaction of the domain specific and strategic knowledge in academic performance.Review of Educational Research, v. 58, p. 375-404, 1988.
BAKER, L. An Evaluation of the role of metacognitive deficits in learning disabilities.Topics in Learning and Learning Disabilities, v.2, n. 1, p. 27-34, 1982.
BAKER, L. Metacognition in comprehension instruction. In: BLOCK, C. C.; PRESLEY, M. (eds.). Comprehension instruction: research based best practices. New York: Guilford, p.77-95, 2002.
BOGDAN, R.; BIKLEN, S. Investigação qualitativa em educação. Uma introdução à teoria e aos métodos. Porto: Porto Editora, 1994.
CANDELA, A. Ciencia en el aula. Los alumnos entre la argumentación y el consenso. México, D. F.: Paidós, 2001.
CHIARO, S. Argumentação em sala de aula: um caminho para o desenvolvimento da autorregulação do pensamento. 2006. 94 f. Tese (Doutorado em Psicologia) – Universidade Federal de Pernambuco. CFCH. Psicologia Cognitiva, 2006.
CHIARO, S.; AQUINO, K. A. S. Argumentação na sala de aula e seu potencial metacognitivo como caminho para um enfoque CTS no ensino de química: uma proposta analítica.
Educação&Pesquisa, São Paulo, v. 43, n. 2, p. 411-426, 2017.
COOK, E.; KENNEDY, E.; McGUIRE, S. Y. Effect of teaching metacognitive learning strategies on performance in general chemistry courses. Journal Chemical Education Research, v. 90, p. 961-967, 2013.
COSTA, A. L. Mediating the metacognitive (Mimeo) nov. 1984. Educationalleadership. Disponível em: http://www.ascd.org/ASCD/pdf/journals/ed_lead/el_198411_costa.pdf. Acesso em 16/12/2017.
DUSCHL, R. A.; OSBORNE, J. Supporting and promoting argumentation discourse.Studies in Science Education, v. 3, p. 39–72, 2002.
ERDURAN, S. Promoting ideas, evidence and argument in initial science teacher training.School Science Review, v.87, n. 321, p. 45-50, 2006.
ERDURAN, S.; JIMÉNEZ-ALEIXANDRE, M. P. Argumentation in science education: perspectives from classroom-based research, Dordrecht: Springer, 2008.
FLAVELL, J. H. Metacognitive aspects of problem solving. In: RESNICK, L.B. (Orgs.). The nature of intelligence. Hillsdale, N.Y.: Erlbaum, p. 231-235, 1976.
FLAVELL, J. H. Speculations about the nature and development of metacognition. In: F. WEINERT; R. KLUWE (eds.). Metacognition, motivation and understanding. Hillsdale, NJ: Erlbaum, p. 21-29, 1987.
GARCIA-MILA, M.; ANDERSEN, C. Cognitive Foundations of Learning Argumentation. In: ERDURAN, S.; JIMENEZ-ALEIXANDRE. P. M. (eds.). Argumentation in Science Education: Perspectives from classroom-based research. Dordrecht: Springer, p.29-45, 2008.
GEORGHIADES, P. From the general to the situated: Three decades of metacognition. International Journalof Science Education, v. 26, p. 365-383, 2004.
GOMES, A. S.; ALMEIDA, A. C. P. Letramento científico e consciência metacognitiva de grupos de professores em formação inicial e continuada: um estudo exploratório. Amazônia: Revista de Educação em Ciências e Matemática, v. 12, n. 24, p. 53-76, 2016.
GONZÁLEZ, F. E. Acerca de la metacognición. Paradigma, v. 17, n. 1, 1996. Disponível em: http://cidipmar.fundacite.arg.gov.ve/doc/paradigma96/doc5.htm. Acesso em: 16/12/2017.
GONZÁLEZ, S.; ESCUDERO, C. En busca de laautonomía a través de las actividades de cognición y de metacognición en Ciencias. Revista Electrónica de Enseñanza de las Ciencias, v. 6, n. 2, p. 310-330, 2007.
GROTZER, T.; MITTLEFEHLDT, S.The role of metacognition in students understanding and transfer of explanatory structures in science. In: ZOHAR, A.; DORI, Y. J. (eds.). Metacognition in Science Education. Trends in current research, contemporary trends and issues in science education, New York: Springer, p.79-99, 2012.
JAHANGARD, Z.; SOLTANI, A.; ALINEJAD, M. Exploring the relationship between metacognition and attitudes towards science of senior secondary students through a structural equation modeling analysis.Journal of Baltic Science Education, v.15, n. 3, p.340-34, 2016.
JIMÉNEZ-ALEIXANDRE, M. P. Designing argumentation learning environments. In: ERDURAN, S.; JIMÉNEZ-ALEIXANDRE, M. P. (eds.). Argumentation in Science Education: perspectives from classroom-based research, Dordrecht: Springer, p.91-115, 2008.
JIMÉNEZ-ALEIXANDRE, M.P.; BUGALLO-RODRÍGUEZ, A.; DUSCHL, R. A. “Doing the lesson” or “doing science”: argument in high school genetics”. Science Education, v. 84, n. 20, p. 757-792, 2000.
KAWASAKI, C. S.; BIZZO, N. M. V. Fotossíntese um Tema para o Ensino de Ciências? Conceitos Científicos em Destaque. Revista Química Nova na Escola, n. 12, p.24-29, 2000.
KELLY, G. J.; DRUKER, S.; CHEN, C. Students’ reasoning about electricity: combining performance assessment with argumentation analysis. International Journal of Science Education, v. 20, n. 7, p.849–871, 1998.
KIPNIS, M.; HOFSTEIN, A.The inquiry laboratory as a source for development of metacognitive skills.International Journal of Science and Mathematics Education, v. 6, p. 601–627, 2007.
KUHN, D. Science as argument: implications for teaching and learning science thinking. Science Education, v. 77, n. 3, p. 319-337, 1993.
LABRACE, E. C.; CALDEIRA, A. M. A.; BORTOLOZZI, J. A Atividade Prática no Ensino de Biologia: uma possibilidade de unir motivação, cognição e interação. In: CALDEIRA, A. M. A. (org.). Ensino de Ciências e Matemática II: Temas sobre a Formação de Conceitos. São Paulo: Editora, UNESP, p. 91-106, 2009.
LARKIN, S. Socially Mediated Metacognition and Learning to Write. Thinking skills and creativity, v. 4, p.149-159, 2009.
LINN, M. C.; SONGER, N. B. How do students make sense of science? Merrill-Palmer Quarterly, v.39, n.1, p. 47–73, 1993.
LOCATELLI, S.W. Relação existente entre metavisualização e as representações simbólica e submicro na elaboração de atividade em química. 2016. 311f. Tese (Doutorado em Ciências) – Universidade de São Paulo, São Paulo, 2016.
LOCATELLI, S.; ARROIO, A. Designing molecules and thinking about them: metavisual skill in the teaching of Geometrical Isomerism. Revista Brasileira do Ensino de Química. v.6, n.1 e n.2, p.99-112, 2011.
LOCATELLI, S.; ARROIO. The monitoring of an introductory class on geometrical isomerism by metavisual incidents. Journal of Science Education, v. 15, n. 2, p. 62-65, 2014a.
LOCATELLI, S.; ARROIO. Metavisual strategy assisting the learning of initial concepts of electrochemistry. Natural Science Education, v.1, n.39, p.14-24, 2014b.
LÜDKE, M.; ANDRÉ, A. D. E. M. Pesquisa em educação: abordagens qualitativas. São Paulo: Editora Pedagógica e Universitária, 1986.
MEDEIROS, E. F. Desenvolvendo Habilidades Argumentativas em Aulas de Biologia: Uma Atividade Experimental Baseada na Perspectiva POA (Predizer, Observar e Argumentar). 2018. 122f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática) - Universidade Federal do Rio Grande do Norte -UFRN, Natal, 2018. No prelo.
NICKERSON, R. Kinds of thinking taught in currents programs. Educational Leadership. v. 42, n.1, p. 26-36, 1984.
OSBORNE, J. The role of Argument: Learning how to learn in School Science. In: FRASER, B. J; TOBIN, K.; MCROBBIE, C. (eds.). Second International Handbook of Science Education. New York: Springer, p. 933-949, 2012.
OSBORNE, J. F.; PATTERSON, A. Scientific argument and explanation: A necessary distinction? Science Education, v. 95, n. 4, p. 627-638, 2011.
OSBORNE, J. et al. Enhancing the quality of argument in school science. School science review, v. 82, n. 301, p. 63-70, 2001.
PINTRICH, P. R. The role of metacognitive knowledge in learning, teaching and assessing.Theory into Practice, v. 4, n. 4, p. 219–225, 2002.
QUEIROZ, G.; AZEVEDO, C. A. A ciência alternativa do senso comum e o treinamento de professores. Caderno Catarinense de Ensino de Física, Florianópolis, v. 4 n.1, p.7-16, 1987.
RICKEY, D.; STACY, A. M.The role of metacognition in learning chemistry.Journal of Chemical Education, v. 77, n.7, p. 915-920, 2000.
SÁNCHEZ-CASTAÑO, J. A.; CASTAÑO-MEJÍA, O. Y.; TAMAYO-ALZATE, O. E. La argumentación metacognitiva en el aula de ciencias. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud, v.13, n.2, p. 1153-1168, 2015.
SASSERON, L. H. et al. Situações Argumentativas em Sala de Aula: a dualidade argumento-explicação. In: IX CONGRES INTERNACIONAL SOBRE INVESTIGACIÓN EN DIDÁCTICA DE LAS CIENCIAS. Girona, p. 3233-3236, 2013.
SCHWARZ, B. B. Argumentation in Learning. In: MULLER, M. N.; PERRET-CLERMONT, A. N (eds.). Argumentation and Education.Theoretical foundations and practice.Breinigsville: Springer, p. 91-126, 2009.
SMITH K. J.; METZ P. A. Evaluating student understanding of solution chemistry through microscopic representations, Journal of Chemical Education, v. 73, p. 233–235, 1996.
THOMAS, G.; ANDERSON, D.; NASHON, S. Development of an Instrument Designed to Investigate Elements of Science Students’ Metacognition, Self-Efficacy and Learning Processes: The SEMLI-S. International Journal of Science Education, v. 30, n. 13, p. 1701–1724, 2008.
TOBIAS, S; EVERSON, H. T. Knowing what you know and what you don't: further research on metacognitive knowledge monitoring. College Board Research Report, New York: College Entrance Examination Board, 2002.
TOULMIN, S. E. Os Usos do Argumento. Trad. Reinaldo Guarany e Marcelo Brandão Cipolla. 2 Ed. São Paulo: Martins Fontes, 2006.
WHITE, R. T. Metacognition. In: KEEVE, J. P. (ed.). Educational Research, Methodology and measurement: an international Handbook. Oxford: Pergamon, p. 70-75, 1988.
ZAGO et al. Fotossíntese: Concepções dos Alunos do Ensino Médio de Itumbiara-GO e Buriti-Alegre-GO. RevistaBrasileira de Biociências, Porto Alegre, v. 5, p. 780-782, 2007.
ZOHAR A.; BARZILAI, S. A review of research on metacognition in science education: current and future directions. Studies in Science Education, v.49, n. 2, p.121-169, 2013.
ZOHAR, A.; DORI, Y. J. Introduction. In: ZOHAR, A.; DORI, Y. J. (eds.). Metacognition in Science Education.Breinigsville: Springer, p. 1-19, 2012.
ZOHAR, A.; NEMET, F. Fostering students’ knowledge and argumentation skills through dilemmas in human genetics.Journal of Research in Science Teaching, v. 39, n.1, p.35–62. 2002.